Paraxial Nodal Expression Reveals a Novel Conserved Structure of the Left-Right Organizer in Four Mammalian Species.

نویسندگان

  • Silke S Schröder
  • Nikoloz Tsikolia
  • Annette Weizbauer
  • Isabelle Hue
  • Christoph Viebahn
چکیده

Nodal activity in the left lateral plate mesoderm is a conserved sign of irreversible left-right asymmetry at early somite stages of the vertebrate embryo. An earlier, paraxial nodal domain accompanies the emergence and initial extension of the notochord and is either left-sided, as in the chick and pig, or symmetrical, as in the mouse and rabbit; intriguingly, this interspecific dichotomy is mirrored by divergent morphological features of the posterior notochord (also known as the left-right organizer), which is ventrally exposed to the yolk sac cavity and carries motile cilia in the latter 2 species only. By introducing the cattle embryo as a new model organism for early left-right patterning, we present data to establish 2 groups of mammals characterized by both the morphology of the left-right organizer and the dynamics of paraxial nodal expression: presence and absence of a ventrally open surface of the early (plate-like) posterior notochord correlates with a symmetrical (in mice and rabbits) versus an asymmetrical (in pigs and cattle) paraxial nodal expression domain next to the notochordal plate. High-resolution histological analysis reveals that the latter domain defines in all 4 mammals a novel 'parachordal' axial mesoderm compartment, the topography of which changes according to the specific regression of the similarly novel subchordal mesoderm during the initial phases of notochord development. In conclusion, the mammalian axial mesoderm compartment (1) shares critical conserved features despite the marked differences in early notochord morphology and early left-right patterning and (2) provides a dynamic topographical framework for nodal activity as part of the mammalian left-right organizer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Xenopus nodal related-1 is indispensable only for left-right axis determination.

In Xenopus, multiple nodal-related genes are expressed in the organizer region. Among them, only Xenopus nodal related-1 (Xnr-1) is expressed unilaterally in the left lateral plate mesoderm (LPM) at late neurula-early tailbud stage. To elucidate the essential role of Xnr-1 for left-right specification, loss of function experiments using antisense morpholino oligonucleotides (MOs) targeting thre...

متن کامل

Reciprocal Signaling between the Ectoderm and a Mesendodermal Left-Right Organizer Directs Left-Right Determination in the Sea Urchin Embryo

During echinoderm development, expression of nodal on the right side plays a crucial role in positioning of the rudiment on the left side, but the mechanisms that restrict nodal expression to the right side are not known. Here we show that establishment of left-right asymmetry in the sea urchin embryo relies on reciprocal signaling between the ectoderm and a left-right organizer located in the ...

متن کامل

Kupffer's vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut.

Monocilia have been proposed to establish the left-right (LR) body axis in vertebrate embryos by creating a directional fluid flow that triggers asymmetric gene expression. In zebrafish, dorsal forerunner cells (DFCs) express a conserved ciliary dynein gene (left-right dynein-related1, lrdr1) and form a ciliated epithelium inside a fluid-filled organ called Kupffer's vesicle (KV). Here, videomi...

متن کامل

The zebrafish forkhead transcription factor FoxH1/Fast1 is a modulator of Nodal signaling required for organizer formation

BACKGROUND Signaling molecules related to the Nodal protein play essential roles in the formation and patterning of the gastrula organizer and the germ layers during vertebrate development. The forkhead transcription factor FoxH1 (also known as Fast1) is a component of the Nodal signaling pathway. Although different roles have been suggested for FoxH1, its specific function during development i...

متن کامل

Functional differences among Xenopus nodal-related genes in left-right axis determination.

An association has been noted previously in chick, mouse and frog embryos between asymmetric nodal-related gene expression and embryonic situs, implying an evolutionarily conserved role in left-right specification. Of the four Xenopus nodal-related genes expressed during gastrulation, only Xnr-1 is re-expressed unilaterally in the left lateral plate mesoderm at neurula/tailbud stages. Here, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cells, tissues, organs

دوره 201 2  شماره 

صفحات  -

تاریخ انتشار 2016